New File Attributes PE-TI-860, Rev. 1
~

DATE: August 27ﬂ 1981

TO: RD & E Pe#sonnel

FROM: Dan Swartzendruber, Barbara Kroczakr

SUBJECT: New File Attributes

REFERENCE: None -

KEYWORDS: Nene

ABSTRACT

Requirements have existed for some time for new file attributes. This
document is a suggestion of how additicnal file attributes may be added
to existing file entrips.

Rev 1

~

iThe previous design ha% been replaced by one which prcvides more
1 flexibility for the future and which will result in less movement of
1file entries.

1Owner fields have alsoybeen ommitted from this new design.

‘ RD&E CONFIDENTIAL

New File Attributes PE-TI-860, Rev. 1

1 Introduction

Requirements have existed for scme time for new file attributes. The
following are a few reasons which come to mind:

a)

b)

c)

d)

e)

ROAM files should‘ be marked as being part of a larger structure so
that utilities such as FUTIL can prevent a user from deleting or
copying part of the structure.

date/time last accessed feor read or write 1is required for an
archiving system tq be implemented.

a flag is required for online/offline files to be implemented.

reccrd/stream informaticn, access methed informaticn will be
required for intelligent handling cf stream I/0.

| ;
a text/binary flag would help to prevent characters being deleted by
accidentally running a text editor cver a file.

Page 2

New File Attributes PE-TI-860, Rev. 1

2 Existing structure

2.1 Existing file entry

(2)

(3)

(W)

Notes
ECW type/length (M
BRA of file
Reserved
protection keys, delete bit (2)
ACL position (offset)
date/time last mecdified
file type (3)
SCW type/length (1)

file name (max 16 words)

word
0 bits 1-8 type = 0 cld ufd header
1 new ufd header
2 vacant entry
3 new ufd file entry
5

ACL entry (see section 2.2)

bits 9-16 1length=length of subentry (including ECW)

6 bits 1-5 unused
6 delete owner rights
7 write owner rights
8 read owner rights
9 delete flag
10-13 unused
14 delete non-owner rights
15 write non-cwner rights
16 read non-owner rights
10 file type bit 1 set: long RAT
2 dumped bit
3 file medified under DOS
u special file
5,6 file read/write lock
7,8 spare
9-16 0 SAM file
1 DAM file
2 SAM seg dir
3 DAM seg dir
4 ufd
11 type = 0 file name subentry

length = length of subentry (including SCW)

If the name subentry were to occupy its maximum allowed length, then

Page 3

~N

New File Attributes | PE-TI-850, Rev. 1

the maximum lengtp of a ncn-ACL type file entry wculd be 28 words.
\

2.2 Existing ACL entry

word ‘ Notes
0 ECW ' type/length (1
1 version #
2,3 date{time last modified .
y type cf object protected (2)
5 spare
6 SCW
7 -n ACL name :
n+ 1 SCW | (3)
n+2 - m ACL data (1)
|
Notes
word
(1) 0 ECW, type = 5 for ACL
(2) y ACL type type=6 file
7 ufd
(3) n+l SCW type 2 ACL data subentry

-1 vacant subentry (may result if part
of ACL data is deleted).

(4) n+2-m ACL data subentry

word 0 SCW type=2 , length
1 . data bits 1 non-FS flag
| 2-8 MBZ

9-11 unused
‘ 12 P access for dirs ringil
unused fecr files ring1
| 13 D access for dirs ringi
‘ X access fer files ringi
14 A access fer dirs ring?
} unused feor files ring?
‘ 15 U access fer dirs ringt
| W access for files ringi
] 16 L access fer dirs ring1
R access for files ringil

2 bits 1-8 as bits 9-16 of word 1 but
for ring 2
i 9-16 as bits 9-16 of werd 1 but
| for ring 3
3 length in characters of follcwing access
‘ name Or group
4 -'n name cr access group

If the non-FS flag (bit 1 of word 1 of subentry) 1is off, the
subentry ends here,

\ Page 4

New File Attributes PE-TI-860, Rev. 1

If the non-FS flag 1is on, there fcllews informaticn for access
contrel in extra modes (not yet defined)

word
n+1 bits 1-4 no cf words per mcde (eml) in follewing entry
bits 5-8 noc of mode entries for ringi
9-12 nc of mode entries fecor ring?2
13-16 no of mocde entries for ring3
n+2 - m mode entries (each a constant length as stated by eml)
no of mode entries per ring defined in bits 5-16 of
previcus werd.

2.3 Existing ufd header

word
0 ECW type/length type=0 old ufd header
=1 new ufd header
1-3 owner password
4-6 non-owner passwerd
7 spare
8-9 quota max
10-11 no of records used in directery
12-13 no of records used in tree
14-15 record/time product
16-17 Julian age cf file
18-19 date/time quota last updated
20 spare
21 position of default directory ACL
22 position of default file ACL

2.4 Existing data returned by RDEN$$

Calling sequence tc RDEN$$
CALL RDEN$$ (key,funit,buffer,buflen,rnw,filnam,namlen,ccde)

where key = K$READ read next entry
+ K$GACL return name of ACL protecting entry
K$NAME pesiticn to start cof entry specified
by filnam and namlen
K$GPOS return the current position in the
ufd as a 32-bit integer in filnam
K$SPOS set the current position in the ufd
frem the 32-bit integer in filnam

The entry is returned in 'buffer' in a format which is slightly
altered from the physical disk format.

Entry format returned by RDEN$$

Page 5

“N

New File Attributes PE-TI-860, Rev. 1

word
0 ECW type/length
1-16 file name (name of file, ufd cr ACL)
17 owner/non-cwner protection (not returned for ACL)
18 reserved
19 file type
20,21 date/time last medified
22-23 reserved
24 length of ACL name
| 25-40 ACL name (for file or ufd) blank padded

2.5 Existing file attributes set by SATR$$

. |
Calling sequence : |

|
CALL SATR$$ (key,filnam,namlen,array,code)

The following keys set existing file attributes

word |
6, bit 9 delete bit K$SDL
6 protection keys K$PROT
8-9 date/time last modified K$DTIM
8-9 datel/time last saved K$DTSA
10 bits 5,6 read/write lock K$RWLK
i 10 bits 2 dumped bit K$DMPB

Page 6

New File Attributes PE-TI-860, Rev. 1

i3 Propcsed new file attributes

1This prcpesal covers a new method of associating additional attributes
iwith file system objects. To increase flexibility, new information
iwill no 1longer be in the form of additional subentries within the file
ientry. This will alsc lead to less frequent movement of file entries
1as they will nct need to be moved when the attributes are changed.

iThe new method will be tc define a new class of ufd entry called an
rattribute entry. These will normally not be visible to the user.
1Attribute blocks will be valid file system entries with ECWs like any
iother.

iWithin the new class of 'attribute entry' there will be two types:

| a) attributes containing informaticn needed by the operating
i system
Initially there will be one such attribute, to be known as the
'0S attribute' but later, an LIO attribute may be added.

i This 0S attribute entry will have its own type in the ECW.

i Word 3 of the existing file entry will point to the O0S
i attribute.

i b) user-definable attributes

i These attributes will all have the same type value in the ECW.
| The name of each attribute will be stored as part of the
i attribute data structure.

i The names of two user-definable attributes will be predefined:
i 1) the PRISM attribute

i 2) the system backup attribute

Word 4 cf the existing file entry will pcint to the first of the
user-definable attributes.

A file entry can have as many user-definable attributes as
desired; each wuser-definable attribute will be a separate
attribute entry and all user-definable attributes for a particular
file entry will be chained together in a doubly-linked list. The
first entry in the list and the 0S entry will each pcint back to
the entry using them.

1All pointers are actually 1integers representing the offset of the
jattribute block from the start of the directory.

1In the initial implementation, ACLs will not be allowed tc have any
iuser-defined attributes.

Page 7

~N

\
|
New File Attributes

iThe maximum size

PE-TI-860,

iand data will be 255 words, just as with other file entries.

Page

Rev.

8

1

ofian:attribute entry, including contrcl information

New File Attributes PE-TI-860, Rev. 1

3.1 Predefined attribute types

3.1.1 Operating system entry

contains information needed by PRIMOS such as: File size,
date/time created, date/time 1last accessed and possibly other
information. This entry will automatically be alloccated for all
files.

3.1.2 System backup entry

centains information for use by a system backup utility, as well
as for offline files. This entry will automatically be added the
first time the entry is saved.

3.17.3 PR1SM entry

contains information needed by the PR1SM/ROAM software.

3.2 Changes tc existing file entry

word
3 0S attribute position (offset)
Yy Position of 1st user definable attribute (offset)

Page 9

“

New File Attributes

PE-TI-860, Rev. 1

3.3 Structure of new attribute entries:

!

3.3.1 03 attribute entry
|

word

[}
=

|
[IVe RN |

— =2 00OVUIW N = O
[}

—

Ul —

O |

\
ECW |
reserved
bakptr
numrec
lwords
dta |
dte \
lra

reserved

Entry Contrecl Word: type=6, length=16

Pointer back tc cbject using this entry
Size of file in reccrds/pages

Size of last record/page in words
Date/time last accessed

Date/time created

Last reccrd in file

3.3.2 User-definable attribute entry

werd
0

1
2
if first
3-5
6

7 - n
n+1

n+e - m

ECW |
flink |
blink F
reserved
SCW

name

SCW

data

Entry Contrecl Word: type=T7, length>=9
Position of next attribute in chain (offset)
Pesition of previous attribute or main entry

Subentry ccntrol word for name cof attribute
Name of attribute

Subentry control word fer attribute

data structure

Data structure of attribute

Page 10

New File Attributes PE-TI-860, Rev. 1

3.4 Automatic conversion of old-style entries:

Anytime a file withcut an OS entry is accessed, the file system will
allccate an 0OS entry and and set word 3 of the file entry to point
to this new attribute entry. This will allow PRIMOS to
automatically convert any file from an older Rev19 partiticn to the
new format. Also, anytime a file with an old-style PR1SM type entry
is accessed, the file system will allccate a new style attribute
entry, copy the information into it, delete the old subentry from
the file entry, and chain the new attribute block onto the file's
attribute list. This will allow PRIMOS tc automatically convert any
file with an old-style PR1SM subentry to the new format. System
backup attributes will be added to file entries the first time they
are saved by the system backup program. There is a pcssibility that
a disk partition might run out of space during one of these
"automatic" attribute adding procedures.

Page 11

“N\

New File Attributes PE-TI-860, Rev. 1

14 New routines to setVread attributes:
\

1A subrcutine called WATTR$ will be provided tc define an attribute and
iassociate it with a fale. This routine will alsc be used to change an
rattribute already associated with a file. A subroutine called RATTRS$
iwill be provided to return any attribute of a - file. A subroutine
icalled DATTR$ will be provided to delete any desired attribute of a
ifile. RATTR$ and DATTR$ will allow specification of the attribute by
1its name or its crdinal number in the list cf attributes for that file.
1This second option is provided primarily fer efficiency in fetching and
ideleting attributes of a file. The user should be aware that adding
inew attributes to a file may change the positicn of others in the list.

iPossible errors are E$ATNF - attribute not found, cr E$EOF when ordinal
jnumber is cut of range.

)

i 4.1 Routine to read named/numbered attribute cf a file

CALL RATTR$(key, f}lnam, fillen, attrnm, attrln,

i atridx, data, dataln, ccode)

i where key = K$READ - read an attribute by name (Input)
a, + K$POSN - specified by ordinal number

E filnam ?‘ - file whose attribute is wanted (Input)
E fillen }: - length of file name (Input)
; attrnm ‘3 - name of attribuke (Input)
; attrln - length of attribute name (Input)
E atridx | - crdinal number (for K$POSN) (Input)
E data \ - buffer attribute is returned in (Output)
E dataln | - maximum length cof attribute (Input)
i a data, NOT of total structure

E code 1 - error code (Output)
i

i 4.2 Data structure returned by RATTR$

del 1 attribute based,

2 attr name char(32) var,
2 attr data len fixed bin,
2 attr_data(dataln) fixed bln

/*¥ name of attribute */
/* length of data ¥/
/% attribute data */

Page 12

New File Attributes

4.3 Routine to set any user-definable attribute of a file

PE-TI-860, Rev. 1

CALL WATTR$(key, filnam, fillen, attrnm, attrln, atridx

where

data, dataln, code)

key =

filnam
fillen
attrnm
attrln
atridx
data

dataln

cede

K$WRIT
+ K$POSN

define an attribute by name
specified by ordinal number

name of file

length of file name

name of attribute

length of attribute name

ordinal number {(for X$POSN)

buffer containing attribute data

length of data te use

error code

(Input)

(Input)
(Input)
(Input)
(Input)
(Input)
(Input)
(Input)

(Output)

4.4 Routine to delete any user-definable attribute of a file

CALL DATTR$(key,

where

key =

filnam
fillen
attrnm
attrln

atridx

code

filnam,

K$DELE
+ K$POSN

fillen, attrnm, attrln, atridx,

delete an attribute by name
specified by crdinal number

name of file

length of file name

name of attribute

length of attribute name
ordinal number (for K$POSN)

error ccde

code)

(Input)

(Input)
(Input)
(Input)
(Input)
(Input)

(Output)

	Cover Page
	1
	Introduction
	2
	Existing Structure
	3
	4
	5
	6
	Proposed New File Attributes
	7
	8
	9
	10
	11
	New Routines To Set/Read Attributes
	12
	13

